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ABSTRACT
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constraint qualification of [15] or McCormick's [11] second order sufficient
optimality condition implies the existence of a class of exact local penalty
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SIGNIFICANCE AND EXPLANATION
Exact penalty functions are associated with a constrained optimization
problem in such a way that for finite values of a penalty parameter there is
a correspondence between local (global) optimal solutions of the unconstrained
penalty function and local (global) solutions of the constrained optimization
problem. Such correspondence is important because it can be exploited to

find solutions to complicated constrained optimization problems by solving

a single unconstrained problem.

In this work it is shown that under certain reasonable conditions there
is a correspondence between solutions of the constrained optimization
problem and the unconstrained optimal solutions of a wide class of exact

penalty functions. Lower bounds are also given for the penalty parameter.
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EXACT PENALTY FUNCTIONS IN NONLINEAR PROGRAMMING

S.-P. Han and O. L. Mangasarian

1. INTRODUCTION
We shall be concerned here with the nonlinear programming problem
minimize f£(x)
subject to g(x) < 0 (1.1)
h(x) = 0

where f, g and h are functions from Rn into R, R' and Rk respectively. A

point x in rR? satisfying the constraints g(x) < 0, h(x) = 0 is called feasible. A
feasible point x such that f(x) < f(x) for all feasible x # X in some neighborhood

N(x) of x is called a local solution of (1.1). If f£(x) < f(x) then x is called

a strict local solution of (1.1). We shall associate with this nonlinear programming

problem the following class of penalty functions
P(x,a) := £(x) + aQ([lg(x) ,hx)) (1.2)
where & is a nonnegative real number (gl )y = maxio.gj(x)), 3=1,...,m, -}
k

is any fixed vector norm in R"‘l+ , and Q is some function from the nonnegative real

line R+ into itself with the following properties

Q(0) =0, Q(Z) >0 for ¢ >0, ® > Q'(0+) := lim 2L = QM0 , 4 (1.3)
>0+

Obviously the third condition of (1.3) is equivalent to Q'(0) being positive and
finite \(Mn Q is differentiable at 0. Included in this class of penalty functions
is the classical exact penalty function
m k
P (x,a) := £(x) +a ) gy, + ) |hj(x)| (1.4)
j-l j-l
which is obtained from (1.2) by setting Q(%) = 'c and using the one norm. With some

exceptions [1,2) most of the literature on exact penalty functions is generally devoted
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to this particular penalty function {9,13,16,21,22) and is mainly concerned with conditions
that ensure that Pl(x,a) has a local (global) minimum at a local (global) minimum
of (1.1) for all sufficiently large but finite values of a. The best known among these
conditions is probably the one due to Pietrzykowski [16] which requires the linear
independence of the gradients of all the equality constraints and of the active inequality
constraints, that is those inequalities satisfied as equalities at the point being
considered. One of our principal results, Theorem 4.4, is more natural than
Pietrzykowski's result which it subsumes. It is more natural because it merely requires
the constraint qualification of (15]. This constraint qualification besides ensuring the
satisfaction of the Karush-Kuhn-Tucker conditions at local minima of (1.1) has been
shown to be a necessary and sufficient condition for the constraints of (1.1) to be
stable under small perturbations [19]. 1In this sense this constraint qualification
may be viewed as the minimum requirement for a problem to be numerically well-posed.
Our generalization of the penalty PJ. (x,a) to the class P(x,a) is not merely general-
ization for its own sake but in order to allow us to handle other norms in (1.2) and
in particular the infinity and two norms which we will make use of elsewhere [7] to obtain
improved quasi-Newton computational algorithms [4,5,6,18]. We also note that the
classical exterior penalty function [3), which can also be obtained from (1.2) by using
the two norm and letting Q(g) = cz, violates however the requirement (1.3) because
Q'(0) = 0. This is as expected because it is well known that for the classical exterior
penalty function the pernalty parameter o is not finite. (See however, an interesting
exception to this for linear programs in [1] and references therein.) Using instead
Q(8) = ¢ or Q(f) =¢ + Cz with the two norm would however result with an exact
penalty function which would again be nondifferentiable.

Because of the significant role played in this paper by the constraint qualifica-
tion of [15]), Section 2 of this paper will be devoted to the derivation of an equivalent
statement of this constraint qualification which will be used in deriving one of our

principal results, Theorem 4.4. Section 3 is devoted to second order sufficient
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optimality conditions which also play an important role in establishing the existence
of exact penalty minimum points. In particular we derive a second order sufficient
optimality condition of the Fritz John type (Theorem 3.1) which subsumes McCormick's
well known second order sufficient optimality condition [3,11]. We also give an F
equivalent formulation (3.6) of McCormick's second order condition (3.9) which may

be used to derive second order optimality conditions for quadratic programming without

any knowledge of the optimal Lagrange multipliers (Corollary 3.6). Section 4 contains

our principal results pertaining to the class of exact penalty function P(x,a) defined

by (1.2). Theorem 4.1 shows that the existence of an exact penalty function minimum

point implies the existence of a minimum point to the nonlinear programming problem

(1.1). Theorem 4.2 establishes the equivalence of local minima of the class of exact

penalty functions defined by (1.2). Theorem 4.4 shows that for sufficiently large

but finite a, P(x,a) has a local minimum point at any strict local minimum point x x
of (1.1) which satisfies the constraint qualification of [15]. In Theorem 4.6 we

show that McCormick's second order sufficiency conditions imply that P(x,a) has a .
strict local minimum for all values of the penalty parameter a that are larger than |
a constant times a norm of the optimal Lagrange multipliers. This norm is dual to the

norm used in the definition of the exact penalty function (1.2). In Theorem 4.7 we

show that the existence of a local minimum of P(x,a) for all sufficiently large a

implies, under suitable assumptions, the satisfaction of the Karush-Kuhn-Tucker condi-

tions [10] for problem (1.1). In our final theorem, Theorem 4.8, we treat the convex

case and again establish the fact that the generalized Slater constraint qualification

{12] implies that P(x,a) has a global minimum for all values of the penalty parameter

larger or equal to the lower bound establ ished in Theorem 4.6.
To simplify notation a vector is either a row or a column vector depending on

the context. For example, the inner product of two vectors x and y is written

simply as xy rather than xTy.




:

T

2. Equivalent Forms of the Constraint Qualification

We begin by recalling the following definition of the constraint gualification.

2.1. Definition [12,15]. Let g(x) <0, h(x) =0 and I ={i|g,(x) =0, i=1,...,m}.
The constraints g(x) < 0, h(x) = 0 are said to satisfy the constraint qualification
of [15] at x if g is differentiable at X, h is continuously differentiable at x,

and
vni(a':), i=1,...,k, are linearly independent

and, there exists a 2z € R" such that

ti(;:)z <0, ie1 2 (2.1)

vni(i)z =0, i=1,...,k

It can be shown by using theorems of the alternative ([12] that (2.1) is equivalent
to the following condition

There exist no u, . ie I and v i=1,...,k such that )

i’

k
] uvg. (x) + }J v.Vh. (x) =0
4 5 B s (2.2)

u, >0; ie1x
=

i

(ui' ie I, v i=1,...,k) #¥0

i’ J
We state and prove now an alternate formulation of (2.1) that will be needed in

deriving our exact penalty results.

2.2. Theorem (Constraint Qualification Equivalence). Let 9()-:) <o, h(x) = 0,

1= u|qi(;) =0,i=1,...,m} and let g and h be continuously differentiable at x.

The constraint qualification (2.1) is satisfied at x if and only if there exists

an open neighborhood N(x;e) of x such that
For each bounded function b(x) : N(x;e) + R )
there exists a bounded function d(x) : N{x;e) » R"
such that for all x in N(x;€)

b~ (2.3)
ti(x)d(x) s -1, ie1

Vhi(x)d(x) = bi(x). L & 3,000k
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Proof (2.3) ==> (2.1): Just set b(x) =0 and x = X in (2.3) and note that for

each b in Rk, Vhi(a-c)z = bi' i=1,...,k, has a solution z in R".

(2.1) ==> (2.3): Because Vh (x), i = 1,...,k are linearly independent it follows

; that k < n. Choose n - k vectors in R", o, .. % such that
(Vhl(;),...,th(;),wl.....vn-k} are linearly independent. Define the n X n matrix
function A(x) as follows

[ h, () ]

th(x)
1

A(x) =

n-k
w

- -

Since A(x) is nonsingular there exists an € > 0 such A-l(x) exists and is bounded
in N(x;€). By (2.1) there exists a vector z in R" such that
; Vg, (x)z <0, ie1

Vhi(;); =0, & =Ayuseik s

ﬁ ¢ . Define z(x) -Acl(x)c where

ses O

0

c = ) L € R
wz

vn-ki J

Clearly z(x) =z and z(x) is continuous in N(x;€). Thus we can shrink ¢; it

necessary, so that

Vg, ()z(x) g =% for x ¢ N(xie) and ie 1

where -y = m(ti(;);} < 0. We also have that
eI

Vh, (x)z(x) = 0 for xe N(x;e) and i =1,...,k .




<t s

lLet bix) be any given bounded function from N(x;€) into nk, let

X D(x) N
b(x) -[ } e R®, and let y(x) = A(x) lE(x). The function y(x) is bounded in
4]

N{(x;€¢) and furthermore

Vhl(x)y(x) = bi(x). 1w 3K .

Let
d(x) = Bz(x) + y(x)
where
B = 3—“—:——&- and A = max sup {Vgi(x)y(x)} 4
ieI xeN(x;€)
Hence d(x) is bounded and satisfies (2.3). o

We note that the more stringent constraint qualification used by Pietrzykowski [16],
namely that the gradients Vg, (x), i€ 1, Vhl(;),...,th(;), are linearly independent,

implies the constraint qualification (2.2) and hence its equivalents (2.1) and (2.3).
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3. Second Order Sufficient Optimality Conditions

We first derive in this section a second order sufficient optimality condition
of the Fritz John type for problem (1.1) which subsumes the standard second order
sufficiency condition of McCormick [11].

3.1. Theorem (Generalized Second Order Sufficiency). Let X be a local solution

of (1.1) or let the (;,\-xo,ﬁ,;) € Rn+1+m+k satisfy the Fritz John necessary optimality
conditions for problem (1.1)

- - m - - k - -

u VE(x) + §] u.9g.(x) + J v.Vh (x) =0

9 o S M jma 33

(@ye® 20, (a ,u,v) *0 ; (3.1)

ug(x) = 0, g(x) £ 0, hix) =0

Let f, g and h be twice differentiable at x, let I = {i|g.(x) =0, i =1,...,m}
i

and let
VE(x)x < O
g, ()x £ 0, ie1 - lelLo(;,Go,G,;)x >0 (3.2)
Vh(X)x =0, i=1,...k
x#*0
where
Lo(x,uo,u,v) = uof.(x) + ug(x) + vh(x) (3.3)

0
and VnL (x,u

its first argument x. Then x is a strict local minimum of (1.1).

o,u,v) denotes the n X n Hessian of L(x,uo,u,v) with respect to
Proof. We shall assume that x is not a strict local minimum of (1.1) and exhibit a
contradiction. Since x is assumed not to be a strict local minimum of (1.1), there
exists a sequence of feasible points {xj}. that is q(xj) s 0 and h(xj) =0,

converging to x, such that £ (%) < £(x) and x) %, Hence




oot —t® oo o o n el -kl ‘
= e -l - %l s - &l
e g s
o>g_i.(x_)_ii_(_f)_. Vg (;) (xj '!)__.,O(HXJ'*”) s ie 1
" e - &l S T -4 T e 1

- -
hi(x ) hi(")

o -0, odlx? - x(h
Il - xI

- %l e - X

= vni(i) W g 2

& ; s g

lence there exists an accumulation point s of the sequence ({s’} := {”x]. ’_"} such that
x’ - x

lIsll = 1, ve@)s < o, ti(i)s <0,ie1, vni(§)§ =0 P e K (3.4)

Making use of the twice differentiability property now gives

o =t q _ e =
0> £ix ; f(xz) - Vf(jx)’_ + -]2= It sl + odlx? - x|y ;‘ — )
1= - xll [Ix? - x| lI=? - x|

3 - =3
g.(x7) -g.(x) Vg (x)s S I g %l
(] . 3 = 12 = 1j = +%sjvzgi(x)sj +°( x _x ) MR SR
llx? - x| flx? - || llx? - x|

v

3.0 . = =vel
hi(x) hi(x) Vhi(x)s

r bt
+£sjvzhi(x)s:s +°_(H_§___xh s D e

- = = = ry L ’
lIx - i Il - xll

Multiplication of the above relations respectively by ;0' Gi' e T, ;i' 1= 1,.000ke

summing and making use of the first equality of the Fritz John conditions (3.1) which
must hold when x is a local solution of (1.1) [12,15] gives

j -
j - - - j o(”x - x")
s VllL(x:uo,u.V)s 0.2 .

0>
I3 - %Il

N

Hence the accumulation point s of {s})} satisfies

sV 1L(x.u

1 ,G,;); ; 0 . t

0
This inequality together with (3.4) contradict (3.2). o
We state now a paraphrase of McCormick's second order sufficient optimality

conditions which may have certain advantages over the standard way [3,11] these




conditions are stated. We will show that the paraphrase and standard statements are
equivalent, and we discuss below some of the advantages of the paraphrase.
3.2. Theorem (Paraphrase of McCormick's Second Order Sufficiency). Let
(X,0,v) € an*k satisfy the Karush-Kuhn-Tucker necessary optimality conditions for

problem (1.1)

m k
VE(x) + ) Gngj(ﬁ) + Gthj(i) =0
j=1 j=1 i (3.5)

u20, ug(x) =0, g(x) 0, h(x) =0

Let f, g and h be twice differentiable at x, let I = {ilg.(X) =0, i =1,...,m)
U

and let
VE(x)x £ 0
Vg,()x <0, ier Cai
2 => xV, L(x,u,v)x > 0 (3.6)
Vhi(x)x-O, s N1 AT
x#0
where
L(x,u,v) = f(x) + ug(x) + vh(x) . (3.7)

Then x is a strict local minimum of (1.1).
3.3. Remark. Theorem 3.1 subsumes Theorem 3.2 because whenever the Karush-Kuhn-Tucker
conditions (3.5) are satisfied, so are the Fritz John conditions (3.1) with Gn =1.
The following simple example shows that there are indeed cases which are covered by
Theorem 3.1 and not by Theorem 3.2:

minimize x

subject to x - x

2

+x2:0.

0 (3.8)

A

X

NN

The origin in R2

is the only feasible point and hence is a strict local solution.
Theorem 3.1 can be used to verify the uniqueness of the solution because the Fritz John
conditions are satisfied, whereas because the Karush-Kuhn-Tucker conditions are not

satisfied, Theorem 3.2 cannot be employed. The same example (3.8) can be used to show

«Q-
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that the origin is not a local minimum of Pl (x,a) as defined in (1.4) for this
problem. Hence the second order Fritz John conditions cannot guarantee the existence
of a local minimum for Pl(x,a). We will show however in Theorem 4.6 that McCormick's
second order sufficient optimality conditions are sufficient to ensure that all exact
penalty functions as defined by (1.2) have a strict local minimum.
3.4. Remark. The standard way of stating the second order sufficiency condition is
to replace the implication (3.6) by the following equivalent one

Vg,(x)x =0, iey

Vgi(;)x 0, ie€xk

na

¥ - xV L{x,u,v)x >0 (3.9)
Vh (X)x =0, i=1,...k

x#*0
where J and K are the following subsets of I

3= {ilg;x) =0, u, >0, i=1,...m

. (3.10)

xs{ilgi(i) =0, u, =0, i=1,...,m}.

i
That implication (3.9) is equivalent to implication (3.6) can be easily established
as shown by the following theorem.
3.5. Theorem (Equivalence of (3.6) and (3.9)). Under the assumptions of Theorem 3.2
implications (3.6) and (3.9) are equivalent.
Proof. We will show that, under the assumptions of Theorem 3.2, the sets S and T
in R" satisfying the conditions on the left~hand side of implications (3.6) and
(3.9) respectively are equivalent.
We first show that S C T. We assume that S is nonempty, otherwise the implica-
tion is trivially true. Let x be in S. Clearly, we only need to show that for

je J, ng(;)x = 0. By (3.5) we have that

k
VE(X)x + § uvg. (X)x + § v.Vh (x)x =0 .
sox. 4,9 4o 3

Because vhj(i)x-o for j=1,...,k and Gj-o for j e K, we have

VE(X)x + ) Gngj(i)x =0 .
jea




Because each term in the above equation is nonpositive and u, > 0 for je g, we

b
then have

ng(§)x =0 for je J.

We now prove that T C S. Again we assume that T is nonempty and let x be

any point in T. It suffices to show that V£ (x)x < 0. As before, we have

k
VE(X)X + ) Gngj(;)x + I v th(;)x =0 .
jer j=1 3

Clearly Vf(;)x = 0 because all the other terms are zeros. The proof is then complete. ©O

We give now an interpretation of the implication (3.6). The set of x in rR®
satisfying the left-hand side conditions of (3.6) can be seen [14) to be the set of
directions along which the linearized problem, obtained by linearizing (1.1) around
x, has nonunique solutions. In order to have uniqueness for the nonlinear problem,
implication (3.6) requires that the Hessian of the Lagrangian be positive definite
along these directions. Besides having this simple interpretation, implication (3.6)
is also simpler than (3.9) because the left-hand side conditions of (3.6) do not
require any information on the multiplier vector u whereas the corresponding condi-
tions of (3.9) do. As an example of the usefulness of this fact we give below a
sufficient condition for the existence of a strict local minimum point for a quadratic
programming problem which does not require the knowledge of any of the multipliers.
3.6. Corollary (Sufficient Conditions for a Strict Local Minimum in Quadratic
Programming) . Let x be a local solution of the quadratic program

minimize %xQx + px
subject to Ax < b (3.11)
Cx = 4

where Q, A and C are n*Xn, mxn and k X n matrices respectively with Q
symmetric, and p, b and d are vectors in Rn, o and Rk respectively. Let

I={ilAx=b,i=1,...m. 1f

i

-ll=-




4 N Sy e R

i
¥
i
i

(xQ + p)x
Ax
Cx

then x is a strict local minimum

<0
< 0, ie
=0
of (3.11).

I

-> xQx > 0

(3.12)




EOP—

4. Exact Penalty Functions

We derive in this section our principal results which relate local (global) solu-
tions of the penalty function (1.2) to local (global) solutions of the nonlinear
programming problem (1.1). Our vehicle for deriving many of the results of this
section will be the classical exact penalty function P1 (x,a) defined
in (1.4). But because we wish to establish these results for the more general penalty
function of (1.2) we establish an important equivalence between members of the class
of penalty functions given by (1.2) in Theorem 4.2 below. Before doing this we
establish the sufficiency of the existence of an exact penalty minimum point for the
existence of a minimum point to the nonlinear programming problem. This theorem was
given in [13) without proof.

4.1. Theorem (Sufficiency of Exact Penalty Minimum). If there exists an a > 0 such
that for all a 2 ;, P().:,a) :P(x,a) for all x in some set Y containing x and some
feasible point of (1.1), then x solves (1.1) subject to the extra condition that x € Y.
Proof. We first show by contradiction that X must be feasible for problem (1.1).

If x is infeasible then Q("g(;)+,h(;)|| ) > 0. Choose any feasible point x which

is also in Y and let

£(x) - £(X) -}

g '“{Q(llq(!)+,h(x')|| o

We then have
£(x) = P(x,0) > P(x,a) = £(x) + a@(|lgx) ,h(x)l) > £0x)
where the last inequality follows from the choice of a. This gives a contradiction
and hence x is feasible for (1.1). To show that x is optimal for (1.1) let x
be any other feasible point for (1.1) which is also in Y and let a > a. Then
£(x) = P(x,a) < P(x,a) = £(x)

and hence x solves (1.1) with the added restriction that x e Y. a

We show now that local minima of exact penalty functions of the class given by

(1.2) are equivalent.

-13-




4.2. Theorem (Equivalence of Local Minima of Exact Penalty Functions). Let Illlu

and || “v denote two vector norms in R“k and let the corresponding exact penalty

functions defined by (1.2) be denoted by l"‘l (x,a) and P“(x,a) with corresponding
Qu and Qv satisfying (1.3). If there exists an x in Rn, an ;u 20, and a
neighborhood Nu (x) of x containing some feasible point of (1.1) such that g and h

are continuous on Nu(;) and

Pu(x,c) 3 Pu(x,u) for all x ¢ Nu(x) and a > au

then there exists an ;v > 0 and a neighborhood Nv (x) containing some feasible point
of (1.1) such that

P\’(x,u) < Pv(x,u) for all x e Nv(x) and a : u_)

where
Q' (0+)a
- 1l +e¢€
Oy for any €€ (0,1)
v 1-¢€ Qv(0+)yw
and Yw is the positive number relating the u-norm and the v-norm in R’Mk by
fivll
yw s Y for all nonzero y € Rmk .
lyll,

Proof. By Theorem 4.1, x is feasible for problem (1.1). Choose € ¢ (0,1) and
t > 0 such that

(1+€)Qi(0nt > Q (t) and Q (t) 3 (1 - €)Qi(O+)t for te (0.t)

and choose Nv(;) (= “u(;) sufficiently small such that "g(x)‘,h(x) "v s t and
||9(x)+.h(x) ||u < t for xe “v(;)' This is possible because q(:-t)+ =0, h(x) = 0
and g and h are continuous on Nu (x). Note that “v(;) contains a feasible point

to problem (1.1), namely the point x itself. For any a > ;v and x € “v(;) we have

-14-




Pv(xoa) "=

£ +a (llgtx,, ne |l )
£ + a1 - €1! (04 [lgx),, hex |l

£0) + oy, (- ey flgta neo |l

Q; (0+)
l='el v
£(x) + uyw[l - e) oron 9, st meall )

v - -
o gt meoll )

- l=-¢€
£x) % ayw[ Q;‘(on

Q' (0+)
1+ e]
£(x)
£x) + ag (llgta meall)

r (x,a) .

To prove our next principal result, namely that when a strict local minimum of

(1.1) exists satisfying the constraint qualification of [15], a local minimum to the

exact penalty function P(x,a)
Pietrzykowski.

4.3. Lemma (Pietrzykowski [17

exists, we make use of the following result due to

1). Let f, g and h be continuous on a neighborhood

of x and let x be a strict local minimum point of problem (1.1). There exists a

number a > 0 such that for any a > G there exists a positive number e€(a) and

a vector x(a) in R" such that

(i) x(a)

€ N(x;e(a))

(ii) 1lim e(a) =0

Qe

(iii) P(x(a),a) g P(x,a) for all x € N(x;e(a)) .

4.4. Theorem (Strict Local Minimum and Constraint Qualification Imply Local Minimum

of Exact Penalty). Let f, g and h be continuously differentiable on a neighbor-

hood of a strict local minimum point of X of (1.1) and let the constraint qualifica-

m+k

tion (2.1) hold at x. Then for each norm |||| in R there exists an a >0,

such that for all a o4 4, x is a local minimum of P(x,a), where P(x,a) is defined

in (1.2) with Q satisfying (1

Proof. We will establish the result for P1 (x,a)

by virtue of Theorem 4.2, for all other P(x,a)

(1.3).

.3).
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of (1.4) and the theorem will follow,

defined by (1.2) with Q satisfying




let X be a strict local minimum of (1.1) in the neighborhood N(x;€). If
I= {1|gi(;) =0, i=1,...,m) is empty and there are no equality constraints h(x) = 0,
the theorem is trivially true. So assume that I is nonempty or there exists at
least one equality constraint. By Lemma 4.3, for all sufficiently large a, there
exist €(a) > 0 and x(a) such that x(a) is a local minimum point of Pl(x,u)
in N(X;e(a)) and 1lim e(a) = 0. Let a be sufficiently large such that e(a) < e.
ae

If for such an a the point x(a) is feasible for problem (1.1), then by Lemma 4.3

£(x) = P (x,a) > P, (x(a),a) = f(x(a))

Because x is a strict local minimum of (1.1) . we then have that x = x(a) and hence
x is a local minimum of P(x,a). Therefore, to complete the proof we
only need to show that x(a) is feasible for all sufficiently large a. We shall
assume the contrary, that is there exists a sequence of positive numbers {a i} + @
such that x(ai) is infeasible for problem (1.1), and exhibit a contradiction. Let
a neighborhood N(x;e) be defined as in Theorem 2.2 and consider the bounded function
b(x) : N(X1€) » R* defined by

bt o {-hi(x)/lhi(x)l if h (x) #0

0o if hi(x) =0 .

By Theorem 2.2 there exists a bounded function d(x) : N(x;e) -+ R" such that for
all x € N(x;e)
ti(x)d(x) :-1, ieI
th(x)d(x) = [-]1 if hi(x) >0
0 if hi(x) =0
1 if hi(x) <0.
Now choose €, € (0,e] such that g (x) <0 for xe N(;tycl) and i f I. We then

have for x € ﬂ(;;el) and x infeasible for (1.1) the following directional deriva-

tive for Pl(x,a) of (1.4) in the direction d4(x)

-16-




Pj(x,0;a(x)) = VE()Ax) +a ] Vg dm) +a ] (Y (xax),
91("”0 g‘(x)-o

+e ] " +a I -"mmam +a ] |vh xd]
h, (x)>0 h, (x)<0 h, (x)=0 e

< ||Vf(x)||2||d(x) ||2- a .

)d(x(ui))) < 0 for a, sufficiently large. This contradicts the

i i

fact that x(ui) is a local minimum of Pl (x,ai) . This contradiction establishes the

| theorem for Pl(x,a) and consequently for all P(x,a) of (1.2) with Q satisfying (1.3).0

} Hence Pi (x (ai) ,Q

| We establish next the existence of a strict local minimum of the exact penalty
function at each strict local minimum of problem (1.1) which satisfies the second

K order sufficient optimality conditions of Theorem 3.2. In addition we are able under
| these assumptions to give a lower bound to the penalty parameter a. We begin by
establishing a lemma.
4.5. Lemma. Let the assumptions of Theorem 3.2 hold. Then for any fixed (u,v) € Rm'k
such that u >u and v > l\?l, x is a strict local minimum of the following function

m k

¢ (x,u,v) :=£(x) + i wg, (x), + Y vj\hj(x)‘ :

i=] i=1
Proof. If the lemma were false, then there exists a sequence x7} converging to x
such that x) # x and

3

¢ (x”,u,v) : W(;,U,v) .

Hence
3 s 3 § 3
£(x’) - f(x) + z “191(x )’ + 2 v1|hi(x )I : 0 4
i=] i=]1

By passing to a subsequence, if necessary, we have a vector s with "sll =1 such

§ =
that s = lim __x_j-_x-:_ . Therefore
Joo |[x? - x||

k
vE(x)s + J u (Vg (x)s), + ] v |vh (x)s] <O
S SRR L ., 3

-17-
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where I = (1|gi(§) =0, i=1,...,m}. Since (x,u,v) satisfy the Karush-Kuhn-Tucker
conditions (3.5) we also have that

k
“)ZI (u; (Y5, G)s), - u,Vg, (x)s) + 121 tv,Ivn, Gos] - v, vn Gys) g O .

Because u >u and v > |v|, each term in the above summation is nonnegative and

hence zero. Thus it follows that

Vg,(x)s = 0 for i€ I and u >0

Vgi(;)a:o for i€ I and Ei-o

vni(i)--o for i =1,...,k .

By the second order sufficiency condition (3.6) or equivalently (3.9) it follows that

lvux.(;,;,;)l > 0. This implies that for sufficiently large j that

Lxd 5.9 > LE,S.9
and consequently
j

¢ (x” ,u,v) : ¥ (xj IG i‘-')

L(xd,a,9)

v

Lix,u,v)

v

£ (x)

@ (X,u,v)

3

av

¢ (x”,u,v)
which is a contradiction. Hence the lemma is true. o

To establish a lower bound for the penalty parameter we need the concept of dual
norms. Recall that for any given vector norm || || in R" there is a corresponding

vector nom "-ll', cailed the dual norm of “ " , which is defined by

=l = vx .
u;‘ff’-z

Recall also that if -:p.q:L and %-4-%-1 then for any 2z in rt the p-norm

A
flell = ¢] jfe |p,1/p and the g-norm ||z||  are dual to each other. FPor a
e - et q

positive definite and symmetric £ x £ matrix A we may define a vector
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norm ||zl|A by ]|z||A= (zAz) 172

. The dual norm of || ||n is "."A-l. Fer a
detailed discussion on the duality of norms readers are referred to Rockafellar [20,
Chapter 15] or Householder [8, pp. 39-45]. We note here that it follows from the
definition of dual norms that if two norms ||-|| and ||||' are dual to each other
then for any x and y we have

eyl < lxllfivll
This is known as the generalized Cauchy inequality and will be needed in the
proof of the following theorem.
4.6. Theorem (Second Order Sufficiency Implies Strict Local Minimum of Exact Penalty)
Let the assumptions of Theorem 3.2 hold. Let Q satisfy (1.3) and be convex on R,/
let ||-|| be any given vector norm in R*** and P(x,a) be its corresponding exact

L]
penalty function defined as in (1.2), and let || ” be its dual norm. Then for

any a > a where

- Al
- sl
Q' (0+)
the point x is a strict local minimum of P(x,a).
Proof. For a satisfying the above inequality we can find (u,v) € R“k such that

u>u, v> |vl and
ag' 04 3 flavl’ > 51"
By Lemma 4.5 there exists a neighborhood N(x) of x such that for x# x and x € N(x)
¢ (x,u,v) < ¢(x,u,v)
where ¢ is defined in the same lemma. Hence by the convexity of Q and by
the generalized Cauchy inequality we have that for any x € N(;) @ > a

and x #* x that

P(x,a)

v

£0x) + aQ' (04) [lg(x) , hix) ||

v

£00 + Jluvll’ flgx . heo ||

nv

m k

£(x) + u,g, (x), + v, |h, ()}
s 5 1 vylhy

> ¢ (x,u,v)

P(;'G, . o
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It is interesting to note that if Q'(0+) = 1 then

a = llewvll,. a, = llawvlly, o = llavll; .

We establish now the fact the Karush-Kuhn-Tucker conditions (3.5) for problem
(1.1) are under suitable conditions satisfied at local minima of P(x,a).
4.7. Theorem. If there exists an a > 0 such that for all a > a, P(x,a) < P(x,a)
for all x in some open neighborhood N(x) which contains some feasible point of (1.1),
and if £, g and h are differentiable at ;c, then x and some (u,v) € Rm+k satisfy
the Karush-Kuhn-Tucker conditions (3.5) for problem (l.1).
Proof. By Theorem 4.1 X is feasible for problem (1.1) and hence g()-() $ 0 and
h(x) = O. By Theorem 4.2 X is a local minimum point of Pl(x,u) and consequently

n+m+k

(x,y = 0,z =0) € R constitute a local solution to the problem

Minimize f(x) + a(ey + 22)
(x,y,z) ROOHK

Lt e & 6 (4.1)

A

=

nA
(=]

A
o

h(x) - z <

A
o

~h(x) - z <
-2z ; 0

where e and % are vectors of ones in R® and Rk respectively. Note that the
Arrow-Hurwicz-Uzawa constraint qualification [12) is satisfied at X, ; =0, z =0.
(In fact it is satisfied at all feasible points of (4.1) for which g and h are
differentiable.) Hence there exist (w,r,s,t,q) € gEHIRER  ch that
(;,; =0,z = O,;,;,;,E,a) satisfy the Karush-Kuhn-Tucker conditions for problem (4.1)
which turn out to be precisely the Karush-Kuhn-Tucker conditions (3.5) for problem
(1.1) upon making the identifications u =w and v =35 - t. o

Using Theorem 4.7 one may interpret the existence of a local minimum to the exact

penalty function as a constraint qualification which ensures the satisfaction of the

Karush-Kuhn-Tucker conditions at local minima of (1.1).
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We sketch in Figure 1 an outline of the relations obtained in this paper for

convenient reference.

CQ

Strict Local

Local Min. Exact Penalty Local
Min. :
Min.
N
FJ2 Exact Penalty Strict

Local Min.

KKT2

CQ: Constraint qualification of [15].

Strict Local Min.: Strict local minimum of problem (1.1).

Local Min.: Local minimum of problem (1.1).

Exact Penalty Local Min.: Local minimum of the exact penalty function (1.2).
Exact Penalty Strict Local Min.: Strict local minimum of (1.2).

KKT: First order Karush-Kuhn-Tucker conditions (3.5) for problem (1.1).

FJ2: Second order Fritz John conditions of Theorem 3.1 for problem (1.1).

KKT2: Second order Karush-Kuhn-Tucker conditions of Theorem 3.2 for problem (1.1).

Figure 1: sum:'y of Results
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Our concluding result generalizes Zangwill's result [22] and is restricted to the

convex case. As in Theorem 4.6 an estimate of the size of the penalty parameter a

can be obtained in terms of the optimal Lagrange multipliers of the original problem (1.1).
4.8. Theorem. Let X be a solution of (1.1), f and g be convex on R and h

be linear. Let g(x) <0 and h(x) = 0 for some x in R®. For any given vector

nom ||-]| in ™% let P(x,a) be its corresponding exact penalty function defined

as in (1.2) with Q satisfying (1.3) and being convex on R, . Then P(;,a) s P(x,a)

for all x in R" and c:& where

ana ||-||" is the dual norm of [|-||.
Proof. Because Q is convex on R+ we have that Q(t) > Q'(0+)t for t > 0. For
a>a and any x e R" we have that

P(x,a) = £(x) + a@(llgx) ., hix) ||

= £(x)

£(x) + ug(x) + vh(x)

£(x) + ug(x) + vh(x) (By Theorem 5.4.8 [12))

A

< £(x) + ug(x), + Vh(x)

<00 + 1531 lleo . neo |

< flx) + |—“_‘.—;|L eUllgr,, ne ) (By convexity of Q)

- Q" (04) +

S £ +a(llgtx) , hx)|l)  (By choice of a)

= P(x,a) . o
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Note Added in Proof

Just before this report was sent to the printer we became aware of another closely

related paper

b S. Dolecki and S. Rolewicz, "Exact penalty for local minima", to appear,

A
in which multifunction theory was used to derive exactness of the penalty function

PR

Pl(x.o) under a "controllability condition" which is equivalent to the constraint

qualification (2.1).
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